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Abstract
Artificial intelligence (AI) will transform every step in the imaging value chain, including interpretive and noninterpretive com-
ponents. Radiologists should familiarize themselves with AI developments to become leaders in their clinical implementation. This
article explores the impact of AI through the entire imaging cycle of musculoskeletal radiology, from the placement of the
requisition to the generation of the report, with an added Canadian perspective. Noninterpretive tasks which may be assisted by
AI include the ordering of appropriate imaging tests, automatic exam protocoling, optimized scheduling, shorter magnetic
resonance imaging acquisition time, computed tomography imaging with reduced artifact and radiation dose, and new methods of
generation and utilization of radiology reports. Applications of AI for image interpretation consist of the determination of bone
age, body composition measurements, screening for osteoporosis, identification of fractures, evaluation of segmental spine
pathology, detection and temporal monitoring of osseous metastases, diagnosis of primary bone and soft tissue tumors, and
grading of osteoarthritis.

Résumé
L’intelligence artificielle (IA) promet de transformer toutes les étapes de la chaine de valeur de l’imagerie médicale, notamment
les volets interprétatifs et non interprétatifs. Les radiologistes doivent se familiariser avec les évolutions de l’IA afin de devenir
des leaders de leur application clinique. Cet article s’intéresse à l’incidence de l’IA à travers le cycle complet de l’imagerie en
radiologie musculosquelettique, à partir de la demande jusqu’à la génération du rapport final, en tenant compte du contexte
canadien. Les missions non interprétatives pour lesquelles l’IA peut être utilisée comprennent la commande des examens
d’imagerie appropriés, un protocole d’imagerie automatisé, une prise de rendez-vous optimisée, un temps d’acquisition des
images par résonance magnétique réduit, une imagerie par tomographie assistée avec des artefacts et des doses de radiations
réduites, et de nouvelles méthodes de génération et d’utilisation des rapports de radiologie. Les applications de l’IA pour
l’interprétation des images consistent en la détermination de l’âge osseux, la mesure de la composition corporelle, le dépistage
de l’ostéoporose, l’identification des fractures, l’évaluation des pathologies de la colonne vertébrale, la détection et le suivi
temporel des métastases osseuses, le diagnostic des tumeurs primaires des os et des tissus mous, et la classification de
l’ostéoarthrite.
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Artificial intelligence (AI) has the potential to redefine every

step of the imaging value chain, including both interpretive and

noninterpretive components. It is important for radiologists to

acquire expertise in AI developments in order to become lead-

ers in their upcoming clinical implementation. Several excel-

lent review articles have explored applications of AI in

musculoskeletal (MSK) imaging,1-5 including a recent issue

of Seminars in Musculoskeletal Radiology dedicated to AI.6

The present article provides an overview of the impact of AI

through the entire imaging cycle of MSK radiology, from the

placement of the requisition to the generation of the report,

with a Canadian perspective.
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Ordering of Imaging Tests

Canada, like many other countries, has witnessed an increase in

utilization of medical imaging over the past years. There is

evidence of some inappropriate use; for example, in one study

by Manta et al on the appropriateness of referrals for outpatient

magnetic resonance imaging (MRI) of the hip, 32.1% of the

requests were deemed inappropriate.7 Imaging of the spine for

uncomplicated low back pain and MRI of joints in older

patients with osteoarthritis are important drivers of overuse in

MSK radiology. Overutilization of imaging not only leads to

unnecessary health care expenditures but may also have some

potential harms, such as radiation exposure in the setting of

computed tomography (CT) and potential risks associated with

gadolinium-based contrast administration for MRI. In the

setting of limited resources in the Canadian public health care

system with lengthy waiting times for MRI, responsible stew-

ardship of imaging resources is essential.

Multiple factors contribute to excess use of imaging, includ-

ing rapidly evolving technology and the exponential growth of

the medical knowledge base, making it challenging for clini-

cians to keep track of current evidence-based imaging guide-

lines. Efforts to reduce overutilization have been implemented.

For example, the Choosing Wisely Canada campaign dis-

courages the use of spine imaging for low back pain without

red flags or the use of ankle X-ray series in adults with minor

trauma.8 There was also an initiative by the Ontario govern-

ment to withdraw public insurance coverage for imaging of

uncomplicated lower back pain.9 Another attempted approach,

which is more laborious, is the manual triage of imaging requi-

sitions for appropriateness for MRI and CT arthrography of the

knee, hip, and shoulder based on the presence of osteoarthritis

on radiographs.10 Clinical decision support (CDS) systems

could also help reduce utilization rates, as noted in some Amer-

ican studies.11 The Canadian Association of Radiologists

(CAR) has collaborated with Medicalis Inc, a Canadian health

care technology company based in Waterloo, Ontario, to inte-

grate the CAR guidelines into an electronic CDS software.12

There has been a long-standing interest in using AI tech-

niques to assist clinicians with medical decisions, including for

radiology order entry, with early works by Kahn and Swett

dating over 3 decades ago.13-15 A CDS created with machine

learning algorithms could automatically evaluate the clinical

query considering a holistic clinical picture using extracted

information from the electronic medical records, such as symp-

toms, physical examination findings, laboratory results, pathol-

ogy reports, and previous imaging data to determine which

imaging examination is most appropriate based on local guide-

lines.3 The CDS would be seamlessly integrated to the compu-

terized order entry system and would provide immediate

guidance to clinicians, without disrupting the normal workflow.

Automatic Protocoling

Protocoling is a crucial step in the radiology workflow to

ensure that the optimal test is performed to allow proper

diagnosis. Alas, it is also a very time-consuming task, often

performed by radiologists or radiology trainees. Radiologist

time and abilities could be put to better use by having a

machine protocol requisitions, with radiologists remaining

available to verify that the adequate protocol was selected

when technologists have doubts.

Trivedi et al evaluated a deep learning–based natural lan-

guage classifier from IBM Watson which assessed free-text clin-

ical indications to determine automatically whether to protocol

the MRI examination with or without intravenous contrast.16 For

cases which were protocolled identically by the original protocol

and the second evaluator, the system demonstrated up to 90%
agreement.

Lee assessed a convolutional neural networks (CNNs) classi-

fier which utilized short-text classification to evaluate whether

MSK MRI studies should be performed according to a routine or

tumor protocol.17 The k agreement for protocol assignment by

the CNN and radiologists was 0.88. The system demonstrated a

sensitivity of 92.10%, a specificity of 95.76%, an area under

curve (AUC) of 0.977, and an overall accuracy of 94.2%.

An AI-based protocoling system could screen the patient’s

records for contrast allergy, renal dysfunction, pregnancy, non-

compatible implantable devices, and presence of metallic for-

eign bodies which could impact on the type of imaging which

the patient can safely undergo.

Artificial intelligence could also help optimize MR proto-

cols. Until now, the selection of imaging planes and pulse

sequences for a protocol was based on an assessment by human

reviewers. However, this task can be performed using machine

learning. For example, Richardson demonstrated the ability of

a CNN to evaluate the value of MR sequences for the diagnosis

of anterior cruciate ligament tears.18

Scheduling

Given the long waiting times for MRI in Canada, AI tools to

automatically prioritize more urgent exams would be helpful to

avoid delays in diagnosis and treatment of time-sensitive con-

ditions, such as sarcoma. The radiology appointments could be

automatically coordinated with clinical follow-up appoint-

ments or dialysis sessions, when applicable. They should also

be planned for the adequate scanner, such as dual-energy CT or

a 1.5T strength magnet to reduce metal artifact, if there is

metallic hardware at the area of interest, with the AI system

screening for the presence of hardware in the clinical and past

radiological data.4

Moreover, AI could help in maximizing patient throughput

to optimize the use of the limited MRI resources in the Cana-

dian setting. For example, Nelson et al presented complex,

nonlinear, high-dimensional models using machine learning

to predict missed MRI appointments.19 A ‘‘no-show’’ is a lost

opportunity for another patient to be scanned or to undergo an

image-guided procedure and contributes to waiting times;

therefore such predictive models could help adapt booking

strategies. The work by Muelly et al suggests that MR scanner

utilization could be increased by improving scheduling
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efficiency using dynamic exam slot lengths determined by a

feed-forward neural network.20

Magnetic Resonance Imaging Image
Acquisition

The use of limited MRI resources can also be optimized by

reducing scan times, thereby increasing patient throughput.

Artificial intelligence tools can help accelerate MRI examina-

tions, such as with undersampling and super-resolution.21 Such

techniques have permitted the acquisition of excellent quality

images, without compromising diagnostic accuracy (Figure 1).

To foster developments in image reconstruction for accelerated

MRI, in a collaborative effort, Facebook AI Research and NYU

Langone Health released the fastMRI data set.22 It is the first

publicly available large deidentified imaging data set, com-

prised of MRI k-space data as well as Digital Imaging and

Communications in Medicine images from knee MRI exami-

nations. Artificial intelligence systems may also provide auto-

mated quality control, thereby reducing the need to recall

patients for repeat examinations.23

Another exciting innovation in the production of MR images

is the creation of synthetic MR images from CT images. Lee

et al studied the use of generative adversarial networks to trans-

form spine CT images into axial T2-weighted MR images

(Figure 2).24 When 2 experienced MSK radiologists evaluated

the similarities between the synthetic and the real MR images

(Figure 3) based on the disc signal, degree of disc protrusion,

muscle, fat tissue, facet joint signal, degree of stenosis, thecal

sac, bone, and overall appearance, the average similarity was

80.2%. When 2 radiologists, 2 spine surgeons, and 2 residents

blindly classified real and synthetic MR images, the failure rate

ranged from 0% to 40%. On quantitative analysis, the mean

absolute error value of synthetic MR images was 13.75 to 34.24

pixels (average 21.19 pixels; Figure 4) and the peak signal to

noise ratio of 61.96 to 68.16 dB (mean 64.92 dB). Generating

synthetic MR images from CT spine images may be particu-

larly useful for patients who are unable to undergo MRI.

Computed Tomography Image Acquisition

Developments in AI may also help improve image quality in

computed tomography. For example, they may assist in

decreasing artifacts related to orthopedic hardware. Zhang and

Yu described the use of a CNN for metal artifact reduction

which merges original and corrected images data for artifact

suppression.25 Artificial intelligence algorithms have also

shown promise in reducing CT radiation dose while still ensur-

ing a high quality of images.26

Image Interpretation

Although AI can assist the imaging value chain in many of its

components, it is AI’s capacity to detect findings and suggest

diagnoses that has received the most attention in recent years.

The following section outlines some of AI’s achievements in

image interpretation for MSK radiology.

Bone Age

Leaps in AI developments have been facilitated by competi-

tions. Most notably, in the field of computer vision, the 2012

ImageNet Large Scale Visual Recognition Challenge played a

major role in promoting the advancement of CNNs. The first

prize of that competition was won by the Canadian team of

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton, who

presented a CNN-based algorithm now known as AlexNet,

which demonstrated an impressive top-5 test error rate of

15.3%, better than the second-best model by 10.9%.27 Their

work illustrated the advantages of CNNs and played a highly

influential role in the field of computer vision.

Similarly, in the field of Radiology, the Radiological Soci-

ety of North America Pediatric Bone Age Machine Learning

Challenge promoted collaborative efforts in furthering AI

developments in medical imaging through competitions.28 This

challenge aimed at determining the best machine learning–

based approaches for most accurately determining bone age.

Figure 1. Examples of magnetic resonance images reconstructed with
parallel imaging (left) and variational network deep learning (right),
both adequately depicting (A, B) medial meniscal tears and (C) carti-
lage thinning with subchondral marrow signal alterations in 3 different
patients. Reprinted Figure 10 in Johnson et al.21
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There has been a long-standing interest in automating radio-

graphic evaluation of skeletal maturity as the traditional ways,

such as using the Greulich and Pyle atlas or the Tanner-

Whitehouse method, are time-consuming, have a limited pre-

cision, and are prone to substantial inter- and intraobserver

variation. The model developed by Drs Alexander Bilbily and

Mark Cicero from University of Toronto won the first prize.28

Their algorithm used the Inception V3 architecture for pixel

information along with concatenation for sex information,

together with data augmentation.

Although many AI developments for image interpretation

remain at the research stage, including several published tech-

niques for skeletal age determination, BoneXpert is a commer-

cially available machine learning tool for automated bone age

evaluation.29 This method uses conventional machine learning

techniques, automatically segmenting 15 bones, then assessing

bone age based on 13 bones using handcrafted features of shape,

intensity, and texture (Figure 5). It outputs the skeletal maturity

according to the Greulich and Pyle or Tanner-Whitehouse stan-

dards. BoneXpert has a precision of 0.17 years with the Greulich

and Pyle method, nearly 3 times better than humans.

Body Composition

Differences in body composition may have important health

outcomes implications. For example, increased visceral fat is

associated with impaired glucose and lipid metabolism with

increased cardiometabolic risk and all-cause mortality,

decreased bone mineral density, nonalcoholic fatty liver dis-

ease, and increased risk for neoplasm.30 Decreased muscle

mass or sarcopenia is linked to poorer prognosis in intensive

care unit patients, soft tissue sarcoma recurrence, as well as

increased mortality post liver transplant, after colorectal

surgery, and in hepatocellular carcinoma.30 Various methods

exist to measure the different tissue types in the human body.

Conventional approaches include anthropomorphic measures,

bioelectrical impedance analysis, and dual-energy X-ray

absorptiometry.30 The quantitative assessment of body compo-

sition may be obtained from segmentation of cross-sectional

images, including computed tomography and MRI examina-

tions. Manual segmentation is tedious and impractical in the

clinical setting. Such a task is however amenable to automation

by machine learning techniques. Weston et al developed a

completely automated deep learning algorithm for the segmen-

tation of abdominal CT examinations aimed for body composi-

tion analysis (Figure 6).31 Their CNN model utilized a U-Net

architecture trained on 2430 CT examinations. It demonstrated

Dice scores with mean (standard deviation) of 0.98 (0.03), 0.96

(0.02), and 0.97 (0.01) in the test set of 270 CT examinations

and 0.94 (0.05), 0.92 (0.04), and 0.98 (0.02) in a data set of

2369 patients with hepatocellular carcinoma, for the subcuta-

neous, muscle, and visceral adipose tissue compartments,

Figure 2. Flow diagram illustrating the synthesis of magnetic resonance (MR) images from computed tomography (CT) images by generative
adversarial networks (GANs). The generator learns to produce synthetic MR images which cannot be differentiated from real MR images by an
adversarially trained discriminate network. Reprinted Figure 1 from Lee et al.24
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Figure 3. Axial images from the 15 computed tomography (CT) examinations (CT01-CT15) (left) from which synthetic T2-weighted magnetic
resonance (MR) images (middle) were generated. The right-sided images are the corresponding real MR images. Reprinted Figure 6 from Lee
et al.24
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respectively. Its results were comparable to or better than those

of expert manual segmentation.

Automated body composition measurements may serve for

opportunistic screening in radiology. That is, information other

than the primary indication for the examination may be gath-

ered from the study without need for additional radiation or

exam time, thereby generating added value.1 Conceivably,

such an algorithm could evaluate all the abdominal CTs per-

formed at an institution and provide body composition infor-

mation in the report, which could be used as a clinical indicator

or for epidemiological research.

Bone Fragility

Another chance for opportunistic radiologic screening is the

assessment for bone fragility. Early detection of decreased

bone mineral density offers an opportunity for prompt treat-

ment aimed at decreasing the risk of fracture and improving

quality of life and survival.32 Several computer-aided diagnosis

systems have been studied for the evaluation of bone quality on

dental panoramic radiographs.33 Such a tool gives the chance to

incidentally screen for osteoporosis on visits aimed at dental

care. Kathirvelu et al presented such an semiautomated mea-

sure of mandibular cortical thickness on a dental panoramic

radiograph to identify patients at risk for low bone mineral

density.32 Their approach consisted first of selecting a region

of interest inferior to the mental foramen with median filtering

and intensity normalization for image enhancement. Then,

Figure 4. Cases with the lowest (top) and highest (bottom) mean absolute error (MAE) between the real (IMR) and synthesized (SynMR)
magnetic resonance images. Reprinted Figure 7 from Lee et al.24

Figure 5. Fifteen bones were automatically reconstructed by the
active appearance model, to subsequently compute the age of indi-
vidual bones using shape, intensity, and texture scores. Of note, the
ring on the third proximal phalanx does not impede reconstruction, as
the ‘‘blind spot method’’ was utilized by the active appearance model.
Reprinted Figure 2 from Thodberg et al.29
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Figure 6. Automated 3-dimensional segmentation of subcutaneous adipose tissue, muscle, visceral adipose and fat-free tissue, and bone
compartments on abdominal computed tomography for the quantification of body composition. Reprinted Figure 5 from Weston et al.31

Figure 7. Performance of mandibular cortical thickness measurement depicting (A) the segmented foreground, (B) the identified lower
boundary, (C) the Haar wavelet magnitude, (D) the identified upper boundary, and (E) the identified upper and lower boundaries on the dental
panoramic radiograph. Reprinted Figure 2 from Kathirvelu et al.32
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Otsu segmentation was used for lower boundary detection with

smothering using Snakes algorithm. The upper boundary was

detected with a Haar wavelet operation. The mandibular cor-

tical thickness was determined by the distance between the

upper and lower boundary pixels (Figure 7). The semiauto-

mated mandibular cortical thickness measure correlated with

the manual measure, with a Pearson r ¼ 0.96 (P < .01).

With a mandibular cortical thickness of 2.3 mm or less, the

sensitivity, specificity, and accuracy for detecting low bone

mineral density as detected at the right femur were of 91%,

70%, and 79%. The use of deep CNN-based computer-

assisted diagnosis systems developed for the identification

of osteoporosis on panoramic dental radiographs.34 Deep

CNN-based computer-assisted diagnosis systems have also

been developed for the identification of osteoporosis on

panoramic dental radiographs.34

Opportunistic osteoporosis screening can also be performed

on computed tomography. Pan et al described a deep learning–

based system for bone mineral density measurement on low-

dose chest CTs performed for lung cancer screening.35 In this

system, segmentation was performed using a 3D CNN model

with U-net architecture and dense connections. Conventional

image processing algorithms were used for vertebral body

labeling. For bone mineral density measurement, mean CT

numbers of trabecular area in cylinder volumes of interest at

target vertebral bodies were acquired, using segmentation mask

with geometric operations. These numbers were mapped to

bone mineral density values with a one-degree linear function.

The Dice coefficient was 86.6% for vertebral body segmen-

tation and 97.5% for vertebral body labeling. Good agree-

ment was demonstrated between the predicted bone mineral

density by the model and the ground truth obtained by

quantitative computed tomography, with correlation coeffi-

cients of 0.964 to 0.968 (mean errors of 2.2-4.0 mg/cm3).

The AUC was 0.927 for osteoporosis and 0.942 for low

bone mineral density.

There has also been interest in using machine learning algo-

rithms to predict osteoporotic fractures from MRI data.36 Con-

volutional neural networks have also been applied for

automatic segmentation of the proximal femur, which would

be useful for measuring bone quality on MRI.37

Fractures

In many Canadian hospitals, there is no routine after-hours

coverage by radiologists for the interpretation of radiographs.

In the evening and overnight, emergency department physi-

cians therefore make decisions based on their own assessment

of radiographs, which subsequently get interpreted by the radi-

ologist during the daytime. This may lead to discrepancies

Figure 8. Saliency maps in 4 representative examples of automatically detected hip fractures, including a nondisplaced transcervical (A, B),
angulated transcervical (C, D), displaced and minimally angulated intertrochanteric (E, F), and displaced and angulated subtrochanteric (G, H)
fractures. Areas which most contributed to image classification were the fracture site, except for subtrochanteric fractures, where it was the
trochanteric region. Reprinted Figure 7 from Yu et al.39
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which may potentially impact patients’ outcomes, such as in

the case of hip fractures where a delayed diagnosis and surgery

may portend a poorer prognosis.38 Artificial intelligence could

aid with automatic fracture detection.

Multiple studies have assessed the use of AI for the detec-

tion (and classification) of fractures both in the axial and

appendicular skeleton on radiographs and computed tomogra-

phy and have shown promise (Figure 8).2,33,39,40 In a systema-

tic review which included 10 studies (8 for fracture detection at

the ankle, hand, hip, spine, wrist, and ulna; 1 for classification

of femoral diaphyseal fractures; and 1 for both detection and

classification of proximal humeral fractures), the area under the

receiving operating characteristic curve (AUC) achieved in 5

studies was 0.95 to 1.0, and the accuracy for 7 studies was 83%
to 98% for fracture detection.40 The AUC was 0.94 in 1 study

and the accuracy was 77% to 90% in 2 studies for fracture

classification. The performance of AI was higher than that of

human readers in 2 studies for the detection and classification

of hip and humeral fractures and was similar to that of human

readers in 1 study for the detection of wrist, hand, and ankle

fractures. Authors noted that fractures in the studied areas are

frequently displaced therefore easier to identify. Artificial

intelligence models could possibly be less accurate for less

evident fractures, such as nondisplaced femoral neck or sca-

phoid fractures.40 A limitation of CNN-based models is that

they must be trained for separate body parts, unlike humans

who translate their knowledge of fractures to any site.2

Spine Imaging

The interpretation of multilevel degenerative spine disease can

be a tedious task, prone to high interobserver variability. This

task is amenable to AI, which could improve its consistency.

Several groups of researchers have presented AI algorithms for

the detection and labeling of vertebral bodies and intervertebral

discs on CT and MRI.41-44 Certain models can also use this

information to grade segmental pathology.44 Jamaludin et al

presented a method to identify and label vertebrae and discs on

MRI with an accuracy of 95.6%. Subsequently, a CNN was

used to evaluate the Pfirrmann grading, disc narrowing,

Figure 9. Midsagittal magnetic resonance images of the spine with detected vertebrae (red boxes) and examples of extracted disc regions (blue
boxes) (A, C), with the associated automated evaluation of the Pfirrmann grading, disc narrowing, spondylolisthesis, central canal stenosis, end
plate defects, and Modic changes (B, D). Reprinted Figure 5 from Jamaludin et al.44 Coloured version of this figure is available online.
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spondylolisthesis, central canal stenosis, end plate defects, and

marrow signal variations, with a performance comparable to a

radiologist (Figure 9).44 Figure 10 illustrates the voxels which

played the greatest importance in determining the grade by

their automated technique. Publicly available data sets, such

as SpineWeb45 and the MICCAI 2018 Challenge on Automatic

Intervertebral Disc Localization and Segmentation46 data set,

help promote the development of this line of research. Other

applications of AI in spine imaging include the use of CNNs to

distinguish tuberculous from pyogenic spondylitis47 and radio-

graphic measurements of spinal alignment.48,49

Musculoskeletal Oncology

The detection of metastatic bone lesions50,51 and the monitor-

ing of their temporal evolution on serial scans can be facilitated

by AI methods.52 Machine learning can also be useful in asses-

sing treatment response for osseous metastases. In a study by

Acar et al, sclerotic bone lesions in patients with prostate can-

cer could be classified as metastases (with 68Ga-prostate-

specific membrane antigen expression on positron emission

tomography/computed tomography) versus sclerotic lesions

with complete response (without 68Ga-prostate-specific mem-

brane antigen expression) using CT texture analysis and

Figure 10. Examples of pairs of disc volumes (upper) and associated evidence hotspots (lower) on 7 of 9 slices (second slice on left and eighth
slice on the right) depicting voxels that were most responsible for the classification. Images show (i) upper end plate defects, (ii) lower end plate
defects, (iii) upper marrow change, (iv) lower marrow change, (v) spondylolisthesis, and (vi) central canal stenosis. Reprinted Figure 7 from
Jamaludin et al.44
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machine learning, with the best performance obtained using a

weighted k-nearest neighbor technique, which demonstrated an

AUC of 0.76.53 Artificial intelligence can also help diagnose

the origin of metastases, such as in a study by Lang et al, in

which radiomics and deep learning methods could differentiate

spinal metastases from lung and other cancers on dynamic

contrast-enhanced MRI with an accuracy of up to 0.81.54

The diagnosis of primary bone tumors can also be assisted

by AI, with works published on this topic by Lodwick et al as

early as the 1960s.55 Prediction of tumor recurrence can also be

achieved with AI, as illustrated by the work of He et al who

used an Inception V3 CNN to predict local recurrence of giant

cell tumor of bone based on MR and clinical data.56

Similarly, AI may help with the diagnosis of soft tissue

tumors.57,58 For example, Malinauskaite et al presented a

machine-learning classifier which could distinguish between

lipoma and liposarcoma on MRI using radiomic features with

an AUC of 0.926, with a performance superior to that of 3 MSK

radiologists.58 Moreover, using radiomic features and machine

learning classification techniques, the histopathological grade

of soft tissue sarcomas can be predicted with an AUC of up to

0.92 (accuracy of 0.88).59 Machine learning methods may also

assist in monitoring posttreatment changes of soft tissue sar-

coma on MRI.60

Osteoarthritis and Cartilage Imaging

The aging Canadian population entails an increased prevalence

of osteoarthritis with an associated rise in demands on the

health care system, including on medical imaging.61 The radio-

graphic grading of osteoarthritis may be automated by AI,

which would expedite and standardize its interpretation. Tho-

mas et al presented an automated deep learning model to stage

knee osteoarthritis according to the Kellgren-Lawrence system

using the Osteoarthritis Initiative radiographs, which reached

an average F1 score of 0.64 and accuracy of 0.66 compared to

the best individual radiologist’s F1 score of 0.60 and accuracy

of 0.60, with no manual image preprocessing required.62 The

qualitative and quantitative assessment of cartilage on MRI can

also be augmented with AI methods, which would make the

assessment of osteoarthritis more precise and consistent. Sev-

eral deep learning systems for the automated detection of car-

tilage lesions have already been developed.63,64

Miscellaneous

Multiple other applications of AI for MSK imaging interpreta-

tion have been published, including detection, classification,

and segmentation tasks. Some examples include the

Figure 11. Flow diagram illustrating the function of a decision support system based on speech recognition and natural language processing.
When the radiologist dictates the fracture description, the natural language processor identifies the disease (fracture) and anatomy (tibia)
concepts from the unstructured text and proceeds to retrieve pertinent fracture knowledge (eg, classification, diagnostic criteria, disease
probability). Reprinted Figure 1 from Do et al.78
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identification of anterior cruciate ligament65 and meniscal66

tears on MRI of the knee, detection of epidural masses on

CT,67 evaluation of the joint space,68 and presence of ero-

sions69 in rheumatoid arthritis, sex estimation from sacrum and

coccyx CT70 or from hand and wrist radiographs,71 assessment

of Achilles tendon healing,72 and automated segmentation of

peripheral nerves of the thigh,73 supraspinatus muscle,74 prox-

imal femur,37 and bones of the wrist75 on MRI. Additional

repetitive and time-consuming tasks suitable to automation will

likely be tackled in coming years.

Results Reporting

Artificial intelligence could transform the production and uti-

lization of radiology reports. Already, speech recognition has

revolutionized how reports are created. Speech recognition

could be further optimized with deep learning methods.76 Arti-

ficial intelligence could translate radiology reports into other

languages, such as from English to French and vice versa,

which would be helpful in Canadian regions where patients

and providers use French and English languages to various

extent. Artificial intelligence can also automatically generate

structured reports, such as in the model published by Lee et al

for bone age.77 Do et al presented a natural language processing

system able to identify fracture and anatomy data from text

obtained with a speech recognition software and synchronously

extract fracture knowledge.78 Such a system could suggest

management recommendations to the radiologist during the

dictation of a report. For example, when the radiologist reports

a Segond fracture, the AI system could suggest further evalua-

tion with an MRI to assess for a potential anterior cruciate

ligament injury (Figure 11). Tan et al described a natural lan-

guage processing system able to extract lumbar spine findings

related to low back pain on MRI and X-ray radiology reports.79

As the authors suggested, such a tool could be beneficial in

research, to help elucidate the link between imaging findings,

symptoms, and prognosis. Artificial intelligence can also be

used to extract follow-up recommendations from radiology

reports, which could help ensure that adequate management

for actionable findings is obtained.80

In conclusion, a myriad of AI applications has been devel-

oped, including tools to improve appropriate ordering, study

protocoling, scheduling, imaging acquisition, workflow opti-

mization, hanging protocols, image interpretation, reporting

of results, and billing. These developments hold promise to

enhance radiologists’ job satisfaction and patients’ outcomes.

However, few of these products are currently commercially

available. There remain some challenges in adopting AI in the

clinical workflow, such as the limited generalizability of cer-

tain algorithms, the ‘‘blackbox’’ phenomenon, and uncertain-

ties surrounding medicolegal aspects of AI.2,4 As academia and

industry collaborate in solving these obstacles, it is likely that

more AI applications will become integrated in the clinical

practice in the near future.
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Machine learning for differentiating metastatic and completely

responded sclerotic bone lesion in prostate cancer: a retrospective

radiomics study. Br J Radiol 2019;92(1101):20190286. doi:10.

1259/bjr.20190286

54. Lang N, Zhang Y, Zhang E, et al. Differentiation of spinal metas-

tases originated from lung and other cancers using radiomics and

deep learning based on DCE-MRI. Magn Reson Imaging. 2019;

64:4-12. doi:10.1016/j.mri.2019.02.013

55. Lodwick GS, Haun CL, Smith WE, Keller RF, Robertson ED.

Computer diagnosis of primary bone tumors: a preliminary report.

Radiology 1963;80(2):273-275.

56. He Y, Guo J, Ding X, et al. Convolutional neural network to

predict the local recurrence of giant cell tumor of bone after

curettage based on pre-surgery magnetic resonance images. Eur

Radiol. 2019;29(10):5441-5451. doi:10.1007/s00330-019-

06082-2

57. Chen CY, Chiou HJ, Chou SY, et al. Computer-aided diagnosis of

soft-tissue tumors using sonographic morphologic and texture

features. Acad Radiol. 2009;16(12):1531-1538. doi:10.1016/j.

acra.2009.07.024

58. Malinauskaite I, Hofmeister J, Burgermeister S, et al. Radiomics

and machine learning differentiate soft-tissue lipoma and liposar-

coma better than musculoskeletal radiologists. Sarcoma. 2020;

2020:7163453. doi:10.1155/2020/7163453

59. Zhang Y, Zhu Y, Shi X, et al. Soft tissue sarcomas: preoperative

predictive histopathological grading based on radiomics of MRI.

Acad Radiol. 2019; 26(9):1262-1268. doi:10.1016/j.acra.2018.09.

025

60. Blackledge MD, Winfield JM, Miah A, et al. Supervised machine-

learning enables segmentation and evaluation of heterogeneous

post-treatment changes in multi-parametric MRI of soft-tissue

sarcoma. Front Oncol. 2019;9:941. doi:10.3389/fonc.2019.00941

61. Birtwhistle R, Morkem R, Peat G, et al. Prevalence and manage-

ment of osteoarthritis in primary care: an epidemiologic cohort

study from the canadian primary care sentinel surveillance net-

work. CMAJ Open. 2015;3(3):E270-275. doi:10.9778/cmajo.

20150018
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